Where are the sunspots?
Measuring Solar Activity

[Graph showing solar activity over time with labels for Dalton Min. and Modern Maximum]

2
The “average” solar cycle

- R_{max}: 117 +/- 42
- T_{max}: 51 +/- 13
- D: 132 +/- 16 months
SC23 vs. “average” SC

(Preliminary data)

R_{max}: 125.9 – Normal
Double max.: OK (1 out of 3 SC)
T_{max}: 49 months – Normal

$D = 151$ months?
SC23 vs. SC 01-22

SC23 is the longest cycle of the last 180 years. Only SC06 (153 months) and SC04 (169 months) were even longer.
How to recognize a SC24-group?

High latitude (25-30°)

Reversed magnetic polarity
The 24 groups of SC24
(Jan 2008 – Sep 2009)
A lóóóót of spotless days

Evolution SC23-24 transit

Minimum in December 2008?
Slow jetstream reason of absence sunspots?

→ Chicken-or-the-egg problem

Remarkably inactive Northern hemisphere!
Deep and long minimum

We have to go back to SC17 and SC15 for such a deep minimum
Deep and long minimum

Length or depth of the minimum cannot be used to make reliable predictions of the next SC-maximum!
Solar wind

- Lowest “pressure” since start observations in 1963
 - Speed OK
 - Density, temperature and magnetic field strength of the solar wind are 20-35% lower
 - Proxies (Svalgaard et al.) since 1890 => OK

- Heliosphere shrinks
 - Cosmic rays increase
 - “Ceiling”

- Similar for other solar parameters
Predicting is difficult, especially the future

Niels Bohr
Predictions for Solar Cycle 24

<table>
<thead>
<tr>
<th>Rank</th>
<th>Name</th>
<th>Type</th>
<th>Technique</th>
<th>(T_{\text{begin}})</th>
<th>E.M.</th>
<th>(T_{\text{max}})</th>
<th>E.M.</th>
<th>(R_{\text{max}})</th>
<th>E.M.</th>
<th>(T_{\text{red}})</th>
<th>Ref.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Schatten</td>
<td>physical</td>
<td>SODA-index</td>
<td>Nov 07</td>
<td>12</td>
<td>Jan 15</td>
<td>12</td>
<td>80</td>
<td>27</td>
<td>Nov 07</td>
<td>(1, 2, 3)</td>
<td>(3) Update by Paschke and Schatten, May 07</td>
</tr>
<tr>
<td>2</td>
<td>Sells</td>
<td>stat-phys</td>
<td>Nonlinear dynamics applied on SODA-index</td>
<td>-</td>
<td>-</td>
<td>Apr 11</td>
<td>-</td>
<td>95</td>
<td>27</td>
<td>Jul 03</td>
<td>(1, 2)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Scalapino</td>
<td>physical</td>
<td>Polar magnetic field</td>
<td>-</td>
<td>-</td>
<td>Jan 11</td>
<td>12</td>
<td>70</td>
<td>2</td>
<td>Jan 07</td>
<td>(1, 2, 3, 5)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Choudhuri</td>
<td>physical</td>
<td>Solar field and magnetic field integrated in dynamo model</td>
<td>Jan 09</td>
<td>12</td>
<td>Jan 12</td>
<td>12</td>
<td>76</td>
<td>2</td>
<td>Mar 07</td>
<td>(1, 2, 3, 5)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Lundstedt</td>
<td>stat-phys</td>
<td>Lund Solar Activity Model (Neural network - Physics)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>85</td>
<td>25</td>
<td>Jan 05</td>
<td>(1, 2)</td>
<td>Open extrapolation</td>
</tr>
<tr>
<td>6</td>
<td>Diangui</td>
<td>physical</td>
<td>Multiterm model & magnetic memory</td>
<td>Dec 07</td>
<td>3</td>
<td>2012</td>
<td>-</td>
<td>169</td>
<td>12</td>
<td>Mar 06</td>
<td>(1, 2, 3, 5)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Hathaway</td>
<td>stat-phys</td>
<td>Multiterm model & Time-Average relation</td>
<td>Dec 06</td>
<td>3</td>
<td>2010</td>
<td>-</td>
<td>145</td>
<td>25</td>
<td>Mar 06</td>
<td>(1, 2, 3, 5)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Matz</td>
<td>physical</td>
<td>Flare energy release during descending 5-G cycle</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Low</td>
<td>-</td>
<td>-</td>
<td>Feb 07</td>
<td>(1, 2, 3)</td>
<td>Max. est. 70</td>
</tr>
<tr>
<td>9</td>
<td>Balatyan</td>
<td>physical</td>
<td>Magnetic Laplace (10 years in advance of R)</td>
<td>Jun 07</td>
<td>12</td>
<td>Jun 11</td>
<td>12</td>
<td>80</td>
<td>-</td>
<td>Dec 09</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Dhub</td>
<td>stat-phys</td>
<td>Non-linear model on Rg and a</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>87.5</td>
<td>25, 3</td>
<td>Mar 03</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>De Jager, Dhub</td>
<td>stat-phys</td>
<td>Non-linear dynamo model and longterm oscillations in (R_{\text{max}}) and (a_{\text{max}})</td>
<td>Jun 08</td>
<td>8</td>
<td>Jun 2014</td>
<td>6</td>
<td>68</td>
<td>17</td>
<td>Dec 08</td>
<td>(1, 2)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Cliver</td>
<td>physical</td>
<td>Variations of the atmospheric solar observation</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Low</td>
<td>-</td>
<td>2004</td>
<td>(1, 2, 3)</td>
</tr>
<tr>
<td>13</td>
<td>Kambe</td>
<td>stat-phys</td>
<td>Precursor method based on 4-az-index at 5-G cycle</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>115</td>
<td>40</td>
<td>May 07</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Rabin</td>
<td>stat-phys</td>
<td>Geomagnetic precursor method based on 4-az-index</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>115</td>
<td>40</td>
<td>May 07</td>
<td>(1)</td>
<td>Symposium</td>
</tr>
<tr>
<td>15</td>
<td>Hathaway</td>
<td>stat-phys</td>
<td>Geomagnetic precursor method based on 4-index</td>
<td>Dec 17</td>
<td>4</td>
<td>2012</td>
<td>4</td>
<td>100</td>
<td>25</td>
<td>Dec 09</td>
<td>(1, 2, 3, 5)</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Dhub et al.</td>
<td>stat-phys</td>
<td>Geomagnetic precursor method based on 4-index (SC17-23 only)</td>
<td>Dec 17</td>
<td>4</td>
<td>2012</td>
<td>4</td>
<td>100</td>
<td>25</td>
<td>Mar 08</td>
<td>(1, 2, 3, 5)</td>
<td>Max. SC24 45+4 months after SC Min.</td>
</tr>
<tr>
<td>17</td>
<td>Jiang, Chatzopoulos, Choudham</td>
<td>physical</td>
<td>Poloidal field and high direction in convection zone</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Feb 08</td>
<td>(1, 2, 3)</td>
</tr>
<tr>
<td>18</td>
<td>Hill</td>
<td>physical</td>
<td>Geophysical observations</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Jan 08</td>
<td>(1)</td>
</tr>
<tr>
<td>19</td>
<td>Wang et al.</td>
<td>statistics</td>
<td>Statistics based on previous, cherry-picked solar cycle</td>
<td>Oct 07</td>
<td>5</td>
<td>Nov 11</td>
<td>5</td>
<td>110</td>
<td>4</td>
<td>Nov 04</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Pudkale</td>
<td>statistics</td>
<td>Statistics on sunspot parameters</td>
<td>-</td>
<td>-</td>
<td>May 12</td>
<td>11</td>
<td>110</td>
<td>4</td>
<td>Nov 07</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Kolk et al.</td>
<td>statistics</td>
<td>Nonlinear methods (Marsden and Stephenson-May algorithm)</td>
<td>-</td>
<td>-</td>
<td>Dec 12</td>
<td>3</td>
<td>87</td>
<td>10</td>
<td>Dec 07</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Kane</td>
<td>statistics</td>
<td>Geomagnetic precursor model in IP - 2004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Dec 07</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Kane</td>
<td>statistics</td>
<td>Geomagnetic precursor model in IP - 2004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Dec 07</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Teng Xu</td>
<td>statistics</td>
<td>Empirical Mode Decomposition and AR model on sunspot numbers</td>
<td>Dec 12</td>
<td>12</td>
<td>Nov 9</td>
<td>12</td>
<td>85</td>
<td>27</td>
<td>Jan 06</td>
<td>(1, 2, 3)</td>
<td>Method predicts SC23-3 min in 2007</td>
</tr>
</tbody>
</table>
3 types of methods

- **Statistical methods (27)**
 - Examples
 - Kontor: Fourrier-spectrum
 - Kilcik: Non-linear methods
 - SC24max: 112 +/- 24

- **Physical methods (9)**
 - Examples
 - Svalgaard, Schatten, Choudhuri: Magnetic field solar poles
 - Dikpati: Meridional stream and magnetic memory
 - SC24max: 83 +/- 14

- **Mixed methods (9)**
 - Examples
 - De Jager, Duhau: Non-linear dynamo-model with R and aa-index
 - Hathaway et al.: Geomagnetic precursor-techniques
 - SC24max: 117 +/- 25
• Most statistical methods predict average maximum
• Most physical methods predict low maximum
• Weak camp vs. Strong camp
 – Weak camp gives more importance to magnetic fields at the solar poles + high diffusion magnetic fields
 – Strong camp gives more importance to precursor techniques over several preceding solar cycles + low diffusion magnetic fields
SC24 Prediction Panel
April 2007

Solar Cycle 24 Sunspot Number Prediction
Data Through 31 March 2007

Low Prediction (Smoothed) High Prediction (Smoothed) 1-Sigma Error
Smoothed Monthly Values Monthly Values

Updated 2007 April 20
NOAA/SEC Boulder, CO USA
SC24 Prediction Panel
May 2009

ISES Solar Cycle Sunspot Number Progression
Data Through Apr 09

Updated 2009 May 8
NOAA/SWFC Boulder, CO USA
SC24 Prediction Panel
May 2009

Or ... a new Maunder Minimum?
The Maunder Minimum

- Between 1645 and 1715 almost no sunspots
 - Till 1705 no more than 1 group visible at the same time
 - Most of the time singular, shortlived, low-latitude spots
- Strongly concentrated in the southern hemisphere
 - On relatively low latitudes (<20°)
- Sudden beginning followed by gradual recovery

Ribes et al. (1993)
The Maunder Minimum

• Maunder Minimum confirmed
 – John A. Eddy (1976)
 • Aurorae-observations
 • Solar eclipses
 – Pre-1715: no mention of corona!
 – Hoyt & Schatten (1995)
 • Additional observations
 – Daily observations for period 1645-1715 and after 1820!

• Isotopes 14C (tree rings) and 10Be (polar ice) confirm existence of (longer lasting) solar cycle during (part of) this period
 – Solar dynamo appears to be still working during this period!
 – 11-year SC no permanent feature of sunspot activity
Lower magnetic field strength => Higher temperature umbra => sunspots less visible

Will sunspots have disappeared by 2015?
Pro & Contra Livingston & Penn

• **Contra**
 - Limited number of observations
 - Concentrated in descending branch of SC23
 - Is it OK to extrapolate lineary?
 • E.g. 1980: 5000 Gauss!

• **Pro**
 - Rate between Radio-flux and Sunspotnumber
 • Leif Svalgaard
 - Percolation-theory
 • Schatten et al. (2007)
Pro & Contra Livingston & Penn

- Pro 1
 - Rate between Radio-flux and Sunspotnumber
 - Leif Svalgaard
 - Less spots for same radioflux
 - Due to Zürich => SIDC?
Pro Livingston & Penn

- Current theory on formation of sunspots
- Pro 2
 - Percolation-theory
 - Schatten et al. (2007)
 - New theory on sunspot generation
 - Sunspots develop from the coalescence of smallscale structure of the same magnetic polarity
 - Basic ideas confirmed by Hinode (2007)
 - Theory can not explain all features of sunspot groups
 - To be continued…

http://science.nasa.gov/headlines/y2007/images/trilobite/Hinode_lower.mov
What *can* this mean for SC24?
Conclusions

• Still *no* certainty on the start of SC24
 – Probably in December 2008
• Long and deep minimum
 – Not seen in 100 years
• Predictions for maximum SC24
 – Consensus *at this moment*
 • Maximum certainly not as high as SC21/22
 – Probably rather moderate (Max SSN: 90 +/- 20)
 • *If* inactivity persists (e.g. mid-2010)
 – Dalton-like minimum similar to early 19th century possible (Max SSN: 50)
 • *If* inactivity persists for a few more years
 – New Maunder minimum?
 » Livingston&Penn, Schatten
Questions?
Current theory on sunspot generation